

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL UNEFA NÚCLEO LARA

GUÍA DE PROBLEMAS DE UNIDAD III. CINEMÁTICA (II PARTE) FÍSICA I. PROF. JUAN CARLOS IBARRA. 2-2012

Movimiento Circular Uniforme.

- 1. Si la rotación de la Tierra aumenta hasta en punto en que la aceleración centrípeta fuera igual a la aceleración gravitacional en el ecuador, a) ¿cuál sería la velocidad tangencial de una persona sobre el ecuador, y b) cuánto duraría el día? Re: a) 7,90 km/s, b) 1,40 h.
- 2. Un atleta hace girar un disco de 1 kg a lo largo de una trayectoria circular de 1,06 m de radio. La velocidad máxima del disco es de 20 m/s. Determine la magnitud de su aceleración radial máxima. Re: 377,35 m/s.
- 3. La órbita de la Luna alrededor de la Tierra es aproximadamente circular, con radio medio de 3,84 x10⁸ m. Se requieren 27,3 días para que la luna complete una revolución alrededor de la Tierra. Encuentre: a) la velocidad orbital media de la Luna y b) su aceleración centrípeta. Re: a) 1,02 x10³ m/s , b) 2,70 x10⁻³ m/s².
- 4. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0,30 m de radio gira a una tasa constante de 630 rev/min. ¿Cuál es la máxima velocidad media con la cual el agua sale de la maquina? Re: 1,18 x10⁻³ m/min.
- 5. Una rueda de 1 m de radio gira a una tasa constante de 200 rev/min. Encuentre la velocidad y la aceleración de una pequeña piedra incrustada en una de las cuerdas sobre el borde exterior de la rueda. Re: 628,31 m/min; 789,56 x10³ m/min².
- 6. La figura 1 representa, en un instante dado, la aceleración total de una partícula que se mueve en la dirección de las manecillas del reloj en un círculo de 2,50 m de radio. En este instante de tiempo, encuentre a) la aceleración centrípeta, b) la velocidad de la partícula y c) su aceleración tangencial. Re: a) 12,99 m/s², b) 5,69 m/s, c) 7,5 m/s².
- 7. Un tren frena cuando libra una curva pronunciada, reduciendo su velocidad de 90 km/h a 50 km/h en los 15 s que tarda en recorrerla. El radio de la curva es 150 m. Calcule la aceleración en el momento en que la velocidad del tren alcanza 50 km/h. Re: 16,66 x10³ km/h.
- 8. Un estudiante une una pelota al extremo de una cuerda de 0,6 m de largo y luego la balancea en un círculo vertical. La velocidad de la pelota es 4,30 m/s en su punto más alto y 6,50 m/s en su punto más bajo. Determine la aceleración en su punto más alto y en su punto más bajo. Re: 30,8 m/s² (-j); 70,4 m/s² (+j).

Movimiento de Proyectiles:

9. Un acróbata en motocicleta se lanza del borde de un precipicio (Figura 2). Justo en el borde, su velocidad es horizontal con magnitud 9 m/s. Obtenga la posición (Y), distancia del borde (R) y velocidad total de la moto después de 0,5 s.

- 10. Un bateador golpea una pelota de modo que ésta adquiere una rapidez inicial de 37 m/s con un ángulo inicial de 53,1 °. Calcular: a) La posición de la bola y la magnitud y dirección de su velocidad a los 2 s. b) Cuándo la pelota alcanza el punto más alto y a qué distancia corresponde ese punto. c) El alcance horizontal de la pelota.
- 11. Imagine que lanza una pelota desde su ventana a 8 m del suelo. Cuando la pelota abandona su mano, se mueve a 10 m/s con un ángulo de 20° debajo de la horizontal. ¿A qué distancia horizontal de su ventana tocará la pelota el piso? Haga caso omiso de la resistencia del aire.
- 12. Un libro de física que se desliza sobre una mesa a 1,10 m/s cae al piso en 0,35 s. Haga caso omiso de la resistencia del aire. Calcule: a) la altura de la mesa; b) la distancia horizontal del borde de la mesa al punto en que cae el libro; c) las componentes horizontal y vertical, y la magnitud y dirección de la velocidad del libro justo antes de caer al piso.

Referencias:

Resnick R., Halliday D. Física Parte I. Novena Edición. Compañía Editorial Continental.

Serway, R. Física Tomo I. Cuarta Edición. McGraw-Hill.

Sears, F., Semansky, M. Física Universitaria. Volumen 1. Undécima edición. Pearson Educación.